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Abstract—With the development of artificial intelligence(AI),
unmanned vehicles can relieve traffic jamming and decrease the
risk of traffic accidents, where deep neural networks (DNNs)
play an important role and have become one of the most critical
technologies. Nevertheless, DNNs are still susceptible to adver-
sarial examples. Even worse, they also show severe performance
degradation when the system needs DNNs to learn new knowledge
without forgetting the old one. As unmanned vehicles travel
on the road, they need to frequently learn new categories and
different representations. Learning all data after the new sample
arrives will expend a lot of time and space. As a result, it
will affect the deployment of artificial intelligence in unmanned
scenes. In recent years, it has been observed that incremental
learning technology can solve the above challenges. However,
previously reported works mainly focused on batch learning.
It is not clear how much impact the adversarial attack will
have on the deep learning model when performing incremental
learning tasks. This issue exposes the hidden safety risks of
unmanned driving and increases discuss opportunities. Therefore,
we propose an adversarial attack based on incremental learning
techniques for unmanned scenes in this paper. Specifically, it can
retain information previously learned by the model. At the same
time, it can renew the old model to learn new model, thereby
continually adding small perturbation to legitimate examples. A
couple of experiments on the Pascal VOC 2012 dataset has been
conducted, and the experiment results show that the adversarial
attack based on incremental learning techniques has a higher
attack success rate. Further, it can improve the successful attack
rate by 8.43%.

Index Terms—Unmanned, adversarial examples, catastrophic
forgetting, incremental learning.

I. INTRODUCTION

W ITH the development and popularization of mobile
communications, ultra-low latency 6G can significantly

improve the technology of Internet of Vehicles (IOV) and
make unmanned more perfect [1]–[3]. The most important
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part of IOV is information transmission between the car and
its surrounding environment and cloud platform [4]–[6]. In
addition, edge computing allows more applications to run
on the edge, reducing the delay caused by data transmission
speed and bandwidth limitations [7], [8]. In unmanned scenes,
deploying an edge computing platform on the access network
can make information transmission faster, more stable, and
safer. At present, unmanned vehicles are composed of multiple
subsystems, which interact with each other. As is known,
unmanned has become a scientific research technology with
both study potential and practical value. On the one hand,
compared to humans, it can analyze and evaluate real-time
road conditions through more powerful information collection
and processing capabilities, and select low-risk operating in-
structions to ensure traffic safety. On the other hand, it can
exchange real-time information with each other through IOV
to plan travel roads in real time and alleviate traffic congestion.
Recently, DNNs have brought excellent performance on many
vision tasks of unmanned vehicles, such as image segmenta-
tion [9], lane line detection [10], [11], and image recognition
[12]. Nevertheless, due to the immaturity of deep learning
models, they still have two important problems: susceptibility
to adversarial examples and catastrophic forgetting.

In recent years, Szegedy et al. [13] found that DNNs are
susceptible to adversarial examples. Adding subtle interference
to legitimate examples may influence the classification accu-
racy. Many works [14]–[18] have presented various adversarial
example attack algorithms, which have achieved good attack
results. Adversarial example attacks have gradually become
a major safety hazard in deep learning, and it also makes
unmanned scene recognition face security problems. As shown
in Fig.1, although the image is indistinguishable from the
human eyes, the automatic recognition system will misjudge
it as a passable sign. When unmanned vehicles and human
drivers are driving on the road at the same time, it will cause
catastrophic consequences. In Florida, the United States, a
Tesla car hit a white truck, resulted in the world’s first fatal
traffic accident for an autonomous driving system [19]. We
all know that Tesla is equipped with today’s top autopilot
technology. However, the artificial intelligence here cannot
correctly distinguish between a white cloud and a white truck.
After Tesla, the unmanned vehicle developed by Google also
suffered a serious accident. Therefore, adversarial attacks can
be used in the IOV system, which can easily lead to traffic
accidents and may injure human safety [20], [21]. With the
upcoming 6G technology, we need to consider the security of
using deep learning algorithms in IOV systems [22]–[25].

In unmanned scenes, it is usually impossible for the system
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to get all training samples at once, but gradually get them over
time. Therefore, despite the great success that DNNS have
achieved in many unmanned vision tasks, they still need to
solve the problem of incremental learning. This batch learning
will expend a lot of time and space when we learn all the data
after the new sample arrives [26]. These problems will affect
the deployment of vehicular networks. The method of fine-
tuning on the new class can ameliorate these problems, but
it seriously reduces the performance of the old classes. This
issue is called catastrophic interference or forgetting [27], as
shown in Fig.2. Recently, many works [28]–[30] show that
incremental learning can solve these challenges.

Fig. 1. Normal traffic stop sign (left) and its adversarial example (right).
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Fig. 2. Catastrophic forgetting. DNN originally trained for three classes,
including person, detects the rider (top). When the network is retrained with
images of the new class motorbike, it detects the motorbike in the test image,
but fails to localize the rider (bottom).

Semantic segmentation is an essential part of image under-
standing in unmanned vision tasks [31]. Unmanned vehicles
can identify which part of the current scene is the drivable
area by inferring relevant knowledge or semantics from the
image. It is particularly crucial for unmanned vehicles. In
2018, Arnab et al. [32] evaluated the robustness of adversarial
attacks against semantic segmentation models. In addition, our
previous research [33] found that adversarial examples have
a well attack effect on unmanned scenes recognition. These

explain that the example attack has huge hidden danger in
the unmanned driving system. In 2019, Michieli et al. [29]
proposed the research on incremental learning in semantic
segmentation, which can work in the real world without re-
taining previously seen images. This explains that incremental
learning is becoming more and more widely among semantic
segmentation. However, the previous research on adversarial
examples mainly focused on batch learning. It is not clear how
they affect the performance of deep learning models when
performing incremental learning tasks in unmanned scenes.
This uncertainty has potential security risks. In this specific
scene, it is a challenge to study the impact of incremental
adversarial examples on the performance of deep learning
models.

To address above mentioned challenges, we present an
adversarial attack based on incremental learning techniques
for unmanned scenes, which has a higher attack success rate.
The main contributions of our work can be summarized as:

• First, in this work, we employ Deeplab v2 network as
segmentation model. Then we combine the incremen-
tal learning technology of knowledge distillation, using
FGSM, Deepfool and MI-FGSM algorithms to attack
under different disturbance values ε, respectively. More-
over, we compare the attack success rate of whether to
use incremental learning technology. And we analyze the
reason why the adversarial attack based on incremental
learning techniques has a higher success rate.

• Second, a couple of experiment results illustrate that the
adversarial attack based on incremental learning tech-
niques not only has a higher attack success rate but
also solves the problem of deep learning architecture
catastrophic forgetting. When adding the last class, we
can find that the first incremental learning method (L′D)
has better effects on robustness than the second incre-
mental learning method (EqL′D). However, L′D has better
effects on robustness than EqL

′
D when adding the last

five classes.

The remainder of this paper is organized as follows. Related
works are discussed in Section II. We present baseline attack
algorithms in Section III. Then, we introduce the proposed
adversarial attack based on incremental learning techniques in
unmanned scenes in Section IV. In Section V, we conduct a
series of algorithm performance evaluation and experimental
results analysis. In section VI, we illustrate the conclusion of
this work.

II. RELATED WORKS

A. Adversarial Attacks

According to the effect of the attack, adversarial examples
contain two types, namely non-targeted attacks and targeted
attacks. For targeted attack, it will set the target of the attack
before the attack, which means that the effect after the attack
is certain. For non-targeted attacks, there is no need to set an
attack target, just change the recognition result after the attack.
In addition, according to the attack cost, adversarial examples
consists of three types as below.
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1) White-box Attack: The premise of white-box attack is
that the architecture of the model can be fully obtained,
including its parameter values, and the composition of the
model [34], [35]. Its advantage is that the calculation speed
is relatively fast, but the gradient information of the target
network is required. White-box attack algorithm mainly in-
clude the fast gradient symbol method (FGSM) [14], DeepFool
algorithm [16], C&W algorithm [36] and the strongest first-
order method PGD [37] etc. algorithm. In this work, we mainly
discuss this type of attack algorithms.

2) Black-box Attack: Black-box attack conduct the next
attack by comparing input and output feedback. It is not clear
about the structure of the model. They conduct the next attack
by comparing input and output feedback. One-pixel attack
proposed by Su et al. [38], which employs differential evolu-
tion (DE) to generate adversarial examples only by changing
a one pixel. Hu et al. [39] proposed a malware adversarial
examples generation method based on MalGAN. In addition,
Sarkar et al. [40] proposed UPSET, which generates universal
disturbances by training a generative neural network G. At
the same time, they proposed ANGRI. However, it generates
disturbance is not universal.

3) Physical Attack: Physical attacks do not understand the
structure of the model and have weak control over the input.
Kurakin et al. [41] verified the existence of adversarial attacks
in physical-world scenario. Attacking the system in a real
environment, the target model is a landing service model, and
the attack method is operative. Eykholt et al. [42] proposed
the RP2 attack algorithm to deceive the road sign classification
model in unmanned scenes, which employs stickers and other
methods to process road signs on real roads. AdvPatch [43]
allows larger disturbances and is not affected by scaling
or rotation. Moreover, Liu et al. [44] improved AdvPatch,
and proposed a perceptual-sensitive generative adversarial
networks (PS-GAN) for the enhancement of attack power and
the improvement of fidelity.

B. Incremental Learning

Under normal circumstances, DNNs have achieved very
successful results on many computer vision problems. How-
ever, they take a high training time to learn the models. Fur-
thermore, when faced with new categories in the dataset, the
neural network will forget the previously learned knowledge
when adapting to the new categories, which is called catas-
trophic interference or forgetting [27]. Recently, researchers
have been studying ways to mitigate this effect [30]. In 2017,
elastic weight consolidation (EWC) [45] algorithm allows AI
to retain previous knowledge through machine learning, and
it can reuse old knowledge to solve new problems. After
the learning without forgetting (LwF) only employs new
knowledge to train while retaining the former features [46].
Zhou et al. [47] proposed that the current model extracts
information from cropped versions of previous model.

C. Semantic Segmentation Model

Semantic segmentation is a pixel classification issue with
semantic marks [48], [49]. In 2015, fully convolutional net-

work (FCN) [50] has opened up a new path for the se-
mantic segmentation task. The SegNet model proposed by
Badrinarayanan et al. [51] is a symmetrical structure, which
is more similar to an auto-encoder in form. DeepLab V1
architecture was proposed by the Google team [52]. The
model achieved a high accuracy of 71.6% in the semantic
segmentation competition, which greatly improved the model’s
ability to capture low-level details. DeepLab V2 [53] network
made the following two improvements based on DeepLab
V1: first, the VGG16 network of the feature extraction part
was replaced with ResNet. Second, the hollow space pyramid
pooling was proposed Atrous spatial pyramid pooling (ASPP)
module. In addition, some more successful methods are U-Net
[54], RefineNet [55], PSPNet [56] and DeepLab V3 [57].

III. BASELINE ATTACK ALGORITHMS

In this work, we employ three classic adversarial example
attack algorithms. These algorithms are white-box non-target
attacks. We choose them due to their advantages as follows: the
calculation of FGSM is small, and the process of generating
adversarial examples is very fast [20]. DeepFool algorithm
generated adversarial examples are highly like the original
examples [34]. MI-FGSM algorithm has good attack results
under the white-box condition. Moreover, for untargeted at-
tacks, the generated adversarial examples have better migration
capabilities [58].

A. FGSM Algorithm

In 2014, Goodfellow et al. [14] proposed the FGSM al-
gorithm used the gradient of a neural network to create
adversarial examples. It employs the gradient of the loss
relative to the original image x, and then creates a new image
x∗ that maximizes the loss. It can be denoted as

x∗ = x+ ε ∗ sign(∇xJ(θ, x, y)) (1)

where y denotes the original image label. ε denotes an ad-
justment coefficient. J(θ, x, y) denotes the loss function. y′

denotes the target label. By reducing the gradient of the loss
function J(θ, x, y′), FGSM algorithm can be extended to a
targeted attack. The targeted FGSM can be denoted as

x∗ = x− ε ∗ sign(∇xJ(θ, x, y′)) (2)

Moreover, it is worth pointing out that the FGSM effect will
be worse when the decision function is nonlinear. This method
can effectively generate the required adversarial examples for
various models.

B. Deepfool Algorithm

In 2016, Moosavi-Dezfooli et al. [16] proposed Deepfool
algorithm, which is based on hyperplane classification. As-
suming the classification function of the classifier is f(x) =
wTx + b, according to the classification function, it can be
known that its affine plane is f = x : wT + b = 0. The
smallest perturbation that changes the decision of the classifier
is ∆(x0, f), and its direction is perpendicular to Γ . It can be
defined as
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ρ∗(x0) := argmin ‖ρ‖2
s.t. sign(f(x0 + ρ)) 6=sign(f(x0))

=− f(x0)

‖w‖22

(3)

In the overall iterative process, the adversarial examples are
generated, which can be obtained as

argmin
r∗

‖r∗‖2 s.t. f(xi) +∇f(xi)T r∗ = 0 (4)

Specifically, it employs a hyperplane to separate each cate-
gory from other categories to establish. In this way, the optimal
solution to this problem can be derived, and adversarial
examples can be generated. After finding a real adversarial
example, the search will terminate.

C. MI-FGSM Algorithm

In 2018, Dong et al. [17] proposed the MI-FGSM algorithm.
During the iterative process, momentum method accumulates
the velocity vector along the gradient direction of the loss
function. By recording the gradient of the previous step to
assist in crossing troughs, small peaks and poor local mini-
mums or maximums. Using this method to generate adversarial
examples can achieve better results than traditional algorithms.
To solves the L∞ norm boundary, a non-targeted adversarial
example x∗ can be generated from the correct example x that
satisfies constraint optimization problem. Update gt+1 by

gt+1 = µ · gt +
∇xJ(x∗t , y)
‖∇xJ(x∗t , y)‖1

(5)

Among them, gt+1 is updated according to the direction of
gradient descent. µ is decay factor. Update x∗t+1 by applying
the sign gradient as

x∗t+1 = x∗t + α · sign(gt+1) (6)

To find adversarial examples for gradient-based methods by
solving constrained optimization problems

argx∗ maxJ(x∗, y), s.t.‖x∗ − x‖∞ ≤ ε (7)

IV. PROPOSED ADVERSARIAL ATTACK APPROACH

To help understand, we discuss adversarial attacks based
on incremental learning techniques in detail. Fig.3 illustrates
the core framework of the unmanned vehicle system, including
perception, planning and control. Among them, the perception
layer employs sensors in the vehicle to discover semantic
areas (such as cars, pedestrians or roads) in street scenes
and provide them with information about the surrounding
environment, which is essential for the security of unmanned
vehicles [59]. At present, there are four main ways to attack by
adversarial examples in the unmanned vehicle system. First,
when the image is transmitted from the sensor to the data
processing system, the attacker can attack by tampering or
mixing adversarial examples. Second, the attacker can steal
important information of the vehicle by entering the unmanned
vehicle operating system, causing the system to crash and lead

to parking. Third, the attacker can also enter the unmanned
vehicle control system to manipulate mechanical components,
hijacking the unmanned vehicle to injure people. This situ-
ation is very dangerous. Fourth, connect multiple unmanned
vehicles and cloud platform systems through IOV to hijack
their communication systems, thus confusing communication
between unmanned vehicles. We mainly focuses on the first
and fourth cases in this work. In addition, we analyze the
robustness of the attack based on incremental learning in the
last part of this section.
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Fig. 3. Unmanned vehicle system architecture. The blue box is the task of
perception layer. The green box is the task of planning layer. The orange box
is the task of control layer.

A. The Proposed Adversarial Attack Based on Incremental
Learning Techniques

We propose the adversarial attack based on incremental
learning techniques for unmanned scenes, which has a higher
attack success rate. This scheme mainly includes three parts:
incremental learning techniques, incremental to obtain seg-
mentation maps, and adversarial attack based on incremental
learning.

1) Incremental Learning Techniques: We employ
Michieli et al. [29] proposed two incremental learning
methods: the first is to perform knowledge distillation on the
output layer to obtain the distillation loss L′D. The second is
to freeze the encoder while performing knowledge distillation
on the output layer to obtain the distillation loss EqL′D when
the encoder is frozen. Knowledge distillation is the transfer
of knowledge learned from a complex model or multiple
models to another lightweight model [60]. Compared with
many existing incremental methods [27], [45]–[47], these two
methods are the most challenging settings in which images
from old mission are not saved and employed to assist the
incremental process. This is particularly suitable for the
unmanned vehicle system, because the system has privacy
issues and limited storage budgets. Fig.4 shows the general
overview of this method.
L′D is the cross-entropy loss masked by the logarithm

between the output of the softmax layer of the former model
Mk−1 and the latter model Mk (assuming it is in the k − th
incremental step at this time). This is because we want to
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Fig. 4. Overview of the k − th incremental step of our learning framework
for semantic segmentation of RGB images.
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Fig. 5. The freezing scheme of the encoder in the k − th incremental step.
MK−1 is the entire model of the previous step.

preserve them by guiding the learning process, so the cross-
entropy is shielded, which is good for considering the classes
that have been seen. The method to evaluate whether there is
a distillation loss can be denoted as

L′D = − 1

|Dtr
k |

∑
XnεDtr

k

∑
cεSk−1

MK−1(Xn)[c] · log(Mk(Xn[c]))

(8)
where Dtr

k refers to a new training sample at each step. k =
1, 2, · · · are incremental steps of indexing so that the model
learns a new set of classes every time. Mk(Xn[c]) reflects the
evaluation score for class c. Sk−1 is the union of all classes
learned before.
EqL

′
D is modified based on the basis of the first L′D.

Encoder aims to extract some intermediate feature representa-
tions, which modification is based on this point. This method
allows the network to be restricted to learning new categories
only through the decoder. Compared with the previous training
stage, it retains the same feature extraction capabilities, as
shown in Fig.5.

2) Incremental to Obtain Segmentation Maps: In 2018,
Arnab et al. [32] found that attacks created from the ba-
sic DeepLab v2 model adopting FGSM had good results.
Therefore, we choose the classic image semantic segmentation
method Deeplab v2 network as feature extractor. The main task
of this part is to gain the semantic segmentation map through
the semantic segmentation model. DeepLab v2 model include:
atrous (dilated) convolution, ASPP and conditional random
field (CRF) [61]. The DeepLab v2 model obtains approximate
segmentation results through DCNN (based on ResNet-101)
that is use atrous convolution. Fig.6 shows the structure of

DeepLab v2. ResNet structure consists of building blocks and
bottleneck, as shown in Fig.7.
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Fig. 6. Atrous Spatial Pyramid Pooling (ASPP). To classify the center pixel
(yellow), ASPP utilizes multi-scale features by using multiple line filters at
different rates. The valid Fields-Of-View are displayed in different colors.
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Fig. 7. Left is a building block. Right is a bottleneck.

3) Adversarial Attack Based on Incremental Learning:
First, we apply the DeepLab v2 network as feature extractor to
incremental obtain the semantic segmentation map. We employ
the Pascal VOC 2012 dataset in experimental, which is divided
into 21 classes (including background). Specifically, here we
first employ the DeeLab v2 network to learn 21 classes. Then
we use three attack algorithms to attack under different pertur-
bation constraint to obtain the attack success rate, respectively.
This is the case of no incremental learning. To see the impact
of incremental learning on the attack success rate, we choose
two options: add one class and add five classes. We employ
the above two incremental methods L′D and EqL

′
D conduct

experiments for these two options, respectively. Specifically,
first, we employ the DeepLab v2 to incrementally learn 20
classes, then learn the last class. Similarly, we employ the
three attack algorithms to attack under different perturbation
constraints to get the attack success rate of the added one class.
Second, we employ the DeepLab v2 network to incrementally
learn 16 classes and then learn the last five classes (here we
are adding five classes at once). In the same way, we use the
three attack algorithms to attack under different perturbation
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constraint to get the attack success rate of the added five
classes.

B. Robustness Analysis of Incremental attack

Incremental learning is mainly reflected in two aspects: on
the one hand, there is no need to reconstruct all the knowledge
bases when every time new tasks are added. This will reduce
the storage space occupation. On the other hand, incremental
learning uses the results of the original knowledge base in the
current sample training, and we only update the learning model
for changes caused by new tasks. This will significantly reduce
time for follow up training. In the growth process, people learn
gradually carried out. Therefore, incremental learning is like
to the model of human learning, and they usually do not forget
the knowledge previously learned.

Incremental learning is to acquire new knowledge from new
samples based on retaining the learning from old samples. In
other words, these new samples have not been learned before
incremental learning. For adversarial example, it actually adds
subtle interference to the original data. And these new samples
themselves are equivalent to adversarial examples. By contin-
uously adding new samples for adversarial learning, the model
is more robust.

The immaturity of deep learning models mainly depends the
inexplicability of DNNs. Neural networks are easily deceived.
Adversarial examples can fool the neural network through
different adversarial example generation strategies, which treat
unrecognizable images as images of known classes. This
reveals the blind spots of deep learning algorithms, and also
shows that there are hidden features and blind spots in the pro-
cess of DNN learning through back-propagation. In addition,
in [62] also shows that adversarial examples are not bugs but
meaningful data distribution characteristics. The transferability
of adversarial examples is the reason for adversarial example
attacks. The transferability means that they are misclassified by
the A1 model, and can also be misclassified by the A2 model.
This illustrates that the attacker can misclassify examples
without contacting the basic model. In recent years, many
works [13], [17], [63]–[65] have also employed the migration
of adversarial examples to achieve attacks. Therefore, when
we perform incremental learning tasks in vehicular networks
system, we need to consider the accuracy and robustness of
the model.

V. PERFORMANCE EVALUATION

To evaluate the practical performance of our approach that
proposed in section IV, this part start to introduce experimental
setup. Then we introduce incremental learning of adversarial
example attack experiment. The experimental scheme of incre-
mental learning follows the proposed in [27] [29]. We conduct
two experiments in alphabetical order, specifically adding the
last class and adding five classes together.

A. Experimental Setup

We employ the Pascal VOC 2012 dataset [66] for experi-
ments, which is divided into 21 different classes (including

background). It contains 10582 training images and 1449
verification images. In addition, it contains six classes (bicycle,
bus, car, motorbike, person, train) common unmanned scenes
dataset. Therefore, the dataset not only can be employed to
evaluate the performance of adversarial example attack based
on incremental technologies in unmanned scenes but also is
more general.

In this work, our training network is simulated on a com-
puter with the experimental settings shown in Table I. First,
we employ the semantic segmentation method DeepLab v2
network based on ResNet-101. Next, we employ the previously
introduced baseline attack algorithms to attack classification
models. We compare the attack success rate of whether to
use incremental learning technology. Furthermore, we set
different perturbation constraints ε when evaluating the attack
success rate. In this way, we can better evaluate the impact of
incremental learning.

TABLE I
EXPERIMENTAL SETTINGS

Item Settings

CPU Intel Core i7-7800X

GPU NVIDIA RTX2080 Ti

Hard Disk 500G

Operating System Ubuntu 16.04

Programming Language Python 3.6

Deep Learning Frame Tensorflow, Keras

B. Add One Class of Attack Success Rate

First, in alphabetical order, we add the last class to the
network. Specifically, we divide the 21 classes of dataset into
two groups. The first group contains the top 20 classes, and
the second group only contains the last class (tvmonitor).
We call the model trained on the dataset M , and the model
learned from 21 classes is called M(0 − 20). We use two
incremental learning methods L′D and EqL′D to illustrate the
effect of an adversarial example attack based on incremental
learning techniques. As shown in Fig.8, examples of semantic
segmentation for the two incremental learning methods when
we add the last class. The IOU values of the semantic
segmentation results obtained by the two incremental learning
methods, as shown in Table II.

Semantic segmentation map obtained according to the se-
mantic segmentation model DeepLab V2 network. We employ
three attack algorithms to incrementally attack the classifica-
tion model, respectively. This is because the nature of the
attack is an attack classification model. For the incremental
learning of added the last class, we employ three attack
algorithms to attack the semantic segmentation maps obtained
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Fig. 8. Examples of semantic segmentation maps when added one class. Blue
represents the tvmonitor, and purple represents the bottle.

TABLE II
IOU ON VOC2012 DATASET WHEN ADDING ONE CLASS

M IOU[%] IOU of authors[%]

M(0-19)(L′D) 66.2 68.4

M(0-19)+M(20)(EFL
′
D) 68.7 71.5

M(0-20) 70.5 73.6

by the two incremental methods, respectively. We compare
the attack success rate of whether to employ incremental
learning technology. In addition, we set different perturbation
constraints ε when evaluating the attack success rate. To
compare the results of incremental learning of the last class,
we choose to attack the top 20 classes when the perturbation
constraint ε is 0.3. We perform experiment on the three attack
algorithms when we employ two incremental learning methods
to add the last class(tvmonitor), and the results are shown in
Table IV. We can perceive that the first incremental method
L′D can achieve better attack effects when we add the last
class.

As shown in Fig.10, first, we choose the perturbation
constraint ε = 0.3 and FGSM algorithm for detailed analysis.
When we employ the first incremental learning method L′D,
the attack success rate can reach 94.55%. When we employ
the second incremental learning method EqL

′
D, the attack

success rate can reach 92.10%. Without using incremental
learning methods, the attack success rate is only 86.12%,
which increases the successful attack rate by 8.43%. From
the results of attack on only 20 classes, it is can perceive that
the attack success rate after incremental learning is indeed
improved. Similarly, for the DeepFool algorithm, we analyze
the situation when the perturbation constraint ε = 0.2. When
we adopt incremental learning method L′D, the attack success
rate can reach 83.71%. The attack success rate can reach
81.52% when we use EqL

′
D. If the incremental learning

method is not used, the attack success rate is only 80.18%. It

can increase the successful rate by 3.53% when perturbation
constraint ε = 0.2. For the MI-FGSM algorithm, it can
be observed that the incremental learning method L′D can
increase the successful attack rate of adversarial examples by
2.59% when the perturbation constraint is ε = 0.3. Besides,
EqL

′
D also increase a certain attack success rate, but not as

much as L′D. So we can conclude that the second incremental
learning method EqL

′
D has better effects on robustness than

L′D. To sum up, adversarial attacks based on incremental
learning technology not only have a higher attack success rate,
but also can solve the catastrophic forgetting of deep learning
architecture.
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Fig. 9. Examples of semantic segmentation maps when added five classes.

TABLE III
IOU ON VOC2012 DATASET WHEN ADDING FIVE CLASSES

M IOU[%] IOU of authors[%]

M(0-15)+M(16-20)(L′D) 62.5 65.7

M(0-15)+M(16-20)(EFL
′
D) 62.4 64.2

M(0-20) 70.5 73.6

C. Add Five Classes of Attack Success Rate

We divide the 21 classes of dataset into two groups to see
the impact of incremental learning technology. The difference
from the previous is the first group contains the top 16 classes,
and the second group contains the last five classes (potted-
plant, sheep, sofa, train, tvmonitor). Fig.9 shows examples of
semantic segmentation for two incremental learning methods.
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Fig. 10. (a) shows the classification results of the three algorithms attacking the model under different disturbances, when we apply the first incremental
learning technique L′D . (b) shows the classification result of incremental attack when the perturbation constraint ε = 0.3. (c) shows the classification result of
incremental attack when the perturbation constraint ε = 0.1. (d) shows the classification result of incremental attack when the perturbation constraint ε = 0.2.

TABLE IV
ADVERSARIAL EXAMPLE ATTACK RESULTS WHEN ADDING ONE CLASS. THE CLASSIFICATION ACCURACY OF THE THREE ATTACK ALGORITHMS AFTER

ATTACK UNDER DIFFERENT DISTURBANCE VALUES ε.

Adversarial Attack Algorithms

M ε FGSM DeepFool MI-FGSM

M(0-19) ε = 0.3 11.47% 18.31% 4.87%

M(0-19)+M(20)
ε = 0.1 14.73% 17.54% 8.35%

(L′D)
ε = 0.2 11.79% 16.29% 3.84%

ε = 0.3 5.45% 16.07% 3.04%

M(0-19)+M(20)
ε = 0.1 15.85% 18.66% 8.84%

(EqL′D)
ε = 0.2 12.72% 18.48% 4.87%

ε = 0.3 7.90% 16.52% 3.53%

M(0-20)

ε = 0.1 18.57% 20.98% 10.49%

ε = 0.2 14.51% 19.82% 5.85%

ε = 0.3 13.88% 18.84% 5.63%
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Fig. 11. (a) shows the classification results of the three algorithms attacking the model under different disturbances, when we apply the second incremental
learning technique EqL′D . (b) shows the classification result of incremental attack when the perturbation constraint ε = 0.3. (c) shows the classification
result of incremental attack when the perturbation constraint ε = 0.1. (d) shows the classification result of incremental attack when the perturbation constraint
ε = 0.2.

TABLE V
ADVERSARIAL EXAMPLE ATTACK RESULTS WHEN ADDING FIVE CLASSES. THE CLASSIFICATION ACCURACY OF THE THREE ATTACK ALGORITHMS

AFTER ATTACK UNDER DIFFERENT DISTURBANCE VALUES ε.

Adversarial Attack Algorithms

M ε FGSM DeepFool MI-FGSM

M(0-15) ε = 0.3 10.28% 18.18% 4.02%

M(0-15)+M(16-20)
ε = 0.1 15.58% 19.24% 7.86%

(L′D)
ε = 0.2 11.38% 17.95% 4.37%

ε = 0.3 7.86% 17.77% 3.21%

M(0-15)+M(16-20)
ε = 0.1 13.66% 18.79% 7.41%

(EqL′D)
ε = 0.2 10.09% 17.68% 3.88%

ε = 0.3 6.25% 16.61% 2.65%

M(0-20)

ε = 0.1 18.57% 20.98% 10.49%

ε = 0.2 14.51% 19.82% 5.85%

ε = 0.3 13.88% 18.84% 5.63%
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The IOU values of the semantic segmentation results obtained
by the two incremental learning methods, as shown in Table
III.

For the incremental learning of the added five classes,
we also use three attack algorithms to attack the semantic
segmentation maps obtained by the two incremental methods,
respectively. We also compare the attack success rate of
whether to use incremental learning technology. Furthermore,
to compare the results of incremental learning of the last five
classes, we choose to attack the top 16 classes when the
perturbation constraint ε = 0.3. We perform experiment on
the three attack algorithms when we employ two incremental
learning methods to add the last five class (pottedplant, sheep,
sofa, train, tvmonitor), as shown in Table V.

Similarly, as shown in Fig.11, we choose the perturbation
constraint ε = 0.3 and FGSM algorithm for detailed analysis.
When we use the first incremental learning method L′D, the
attack success rate can reach 92.14%. When we apply EqL′D,
the attack success rate can reach 93.75%. Without using
incremental learning methods, the attack success rate is only
86.12%. From the results of attack on only 16 classes, we
also can discover that the attack success rate after incremental
learning is indeed improved. For the DeepFool algorithm, we
also analyze the situation when the perturbation constraint
ε = 0.3. When we apply incremental learning method L′D,
the attack success rate can reach 82.23%. It can reach 83.39%
when we use EqL′D. If the incremental learning method is not
used, the attack success rate is only 81.16%. The incremental
learning method EqL

′
D can increase the successful attack

rate by 2.23%. For the MI-FGSM algorithm, it can be found
that the incremental learning method EqL′D can increase the
successful attack rate of adversarial examples by 3.08% when
the perturbation constraint is ε = 0.1. Therefore, when adding
five classes, we can also draw the same conclusion as adding
one class. Adversarial attacks based on incremental learning
technology have a higher attack success rate. However, in
this case, the first incremental learning method L′D has better
effects on robustness than EqL′D.

VI. CONCLUSION AND FUTURE WORK

In this work, we have presented an adversarial attack
based on incremental learning techniques for unmanned in
6G scenes. The development of 6G-based Internet of Vehicles
systems can make future unmanned technologies develop
faster and safer. Compared with the three baseline attack
algorithms, we conclude that the adversarial attack based on
incremental learning technology has a good attack effect. The
system model in this paper can learn new knowledge without
storing images of old tasks, which can reduce the waste of
time and space, and can also solve the catastrophic forgetting
problem of deep learning architecture.

In the future work, we will try a dataset consisting of only
unmanned scene classes, and we can use other incremental
learning methods for better evaluation. We will also try to
analyze the impact of adversarial attacks based on incremental
learning technology on unmanned object detection tasks. If
conditions permit, we will try to combine with vehicular
networks in the era of 6G.
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